Statistical Mechanics
Classical Mechanics¶
The movement of a particle is given by an ODE:
\[
\frac{d}{dt}\begin{bmatrix} x \\ p \end{bmatrix} = \begin{bmatrix} \frac{\partial }{\partial p}H(x,p) \\ -\frac{\partial }{\partial x}H(x,p) \end{bmatrix}
\]
Harmonic oscillator¶
\[
H(x,p) = \frac{p^2}{2} + \frac{x^2}{2}
\]
Statistical Mechanics¶
We are interested in stationary distributions on phase space (i.e. fixed points on the information manifold under the flow of the dynamics).
Canonical distribution¶
\[
p(x, v) \propto e^{-H(x, v)}
\]
Example of harmonic oscillator¶
\[
p(x,v) \propto e^{-\frac{1}{2}v^2 - \frac{1}{2}x^2}
\]
i.e a Gaussian distribution!
[illustration]
Microcanonical distribution¶
\[
p(x, v) \propto \delta(H(x, v) - E)
\]
for some fixed \(E\).
Example of harmonic oscillator¶
[illustration]